The Raydiant Labyrinth

kellyoxford:

sean3116:

sixpenceee:

As someone who wants to study the human consciousness I found this very interesting.

Scott Routley was a “vegetable”. A car accident seriously injured both sides of his brain, and for 12 years, he was completely unresponsive.

Unable to speak or track people with his eyes, it seemed that Routley was unaware of his surroundings, and doctors assumed he was lost in limbo. They were wrong.

In 2012, Professor Adrian Owen decided to run tests on comatose patients like Scott Routley. Curious if some “vegetables” were actually conscious, Owen put Routley in an fMRI and told him to imagine walking through his home. Suddenly, the brain scan showed activity. Routley not only heard Owen, he was responding.

Next, the two worked out a code. Owen asked a series of “yes or no” questions, and if the answer was “yes,” Routley thought about walking around his house. If the answer was “no,” Routley thought about playing tennis.

These different actions showed activity different parts of the brain. Owen started off with easy questions like, “Is the sky blue?” However, they changed medical science when Owen asked, “Are you in pain?” and Routley answered, “No.” It was the first time a comatose patient with serious brain damage had let doctors know about his condition.

While Scott Routley is still trapped in his body, he finally has a way to reach out to the people around him. This finding has huge implications.

SOURCE

HOLY STEAMING SHITFUCKS

WHY IS EVERYONE NOT LOSING THEIR SHIT ABOUT THIS

#Ughhhhhhhhhhhhhhhhhhhhhh

I don’t think it’s as painful, even if.

victoriousvocabulary:

FIRMAMENT
[noun]
the vault of heaven; the sky.
Etymology: from Late Latin firmāmentum, “sky” (considered as fixed above the earth), from Latin for “prop, support”, from firmāre, “to make firm”.
[Adam Kindwall]

victoriousvocabulary:

FIRMAMENT

[noun]

the vault of heaven; the sky.

Etymology: from Late Latin firmāmentum, “sky” (considered as fixed above the earth), from Latin for “prop, support”, from firmāre, “to make firm”.

[Adam Kindwall]

thejogging:

The Internet Is Your Oyster, 2014
Inkjet Print
¥€$

that feels somewhat encouraging when your entire day with it has felt like a brick wall.

thejogging:

The Internet Is Your Oyster, 2014

Inkjet Print

¥€$

that feels somewhat encouraging when your entire day with it has felt like a brick wall.

neurosciencestuff:

Hereditary trauma
The phenomenon has long been known in psychology: traumatic experiences can induce behavioural disorders that are passed down from one generation to the next. It is only recently that scientists have begun to understand the physiological processes underlying hereditary trauma. ”There are diseases such as bipolar disorder, that run in families but can’t be traced back to a particular gene”, explains Isabelle Mansuy, professor at ETH Zurich and the University of Zurich. With her research group at the Brain Research Institute of the University of Zurich, she has been studying the molecular processes involved in non-genetic inheritance of behavioural symptoms induced by traumatic experiences in early life.
Mansuy and her team have succeeded in identifying a key component of these processes: short RNA molecules. These RNAs are synthetized from genetic information (DNA) by enzymes that read specific sections of the DNA (genes) and use them as template to produce corresponding RNAs. Other enzymes then trim these RNAs into mature forms. Cells naturally contain a large number of different short RNA molecules called microRNAs. They have regulatory functions, such as controlling how many copies of a particular protein are made.
Small RNAs with a huge impact
The researchers studied the number and kind of microRNAs expressed by adult mice exposed to traumatic conditions in early life and compared them with non-traumatized mice. They discovered that traumatic stress alters the amount of several microRNAs in the blood, brain and sperm – while some microRNAs were produced in excess, others were lower than in the corresponding tissues or cells of control animals. These alterations resulted in misregulation of cellular processes normally controlled by these microRNAs.
After traumatic experiences, the mice behaved markedly differently: they partly lost their natural aversion to open spaces and bright light and had depressive-like behaviours. These behavioural symptoms were also transferred to the next generation via sperm, even though the offspring were not exposed to any traumatic stress themselves. 
Even passed on to the third generation
The metabolism of the offspring of stressed mice was also impaired: their insulin and blood-sugar levels were lower than in the offspring of non-traumatized parents. “We were able to demonstrate for the first time that traumatic experiences affect metabolism in the long-term and that these changes are hereditary”, says Mansuy. The effects on metabolism and behaviour even persisted in the third generation.
“With the imbalance in microRNAs in sperm, we have discovered a key factor through which trauma can be passed on,” explains Mansuy. However, certain questions remain open, such as how the dysregulation in short RNAs comes about. “Most likely, it is part of a chain of events that begins with the body producing too much stress hormones.”
Importantly, acquired traits other than those induced by trauma could also be inherited through similar mechanisms, the researcher suspects. “The environment leaves traces on the brain, on organs and also on gametes. Through gametes, these traces can be passed to the next generation.”
Mansuy and her team are currently studying the role of short RNAs in trauma inheritance in humans. As they were also able to demonstrate the microRNAs imbalance in the blood of traumatized mice and their offspring, the scientists hope that their results may be useful to develop a blood test for diagnostics.

neurosciencestuff:

Hereditary trauma

The phenomenon has long been known in psychology: traumatic experiences can induce behavioural disorders that are passed down from one generation to the next. It is only recently that scientists have begun to understand the physiological processes underlying hereditary trauma. ”There are diseases such as bipolar disorder, that run in families but can’t be traced back to a particular gene”, explains Isabelle Mansuy, professor at ETH Zurich and the University of Zurich. With her research group at the Brain Research Institute of the University of Zurich, she has been studying the molecular processes involved in non-genetic inheritance of behavioural symptoms induced by traumatic experiences in early life.

Mansuy and her team have succeeded in identifying a key component of these processes: short RNA molecules. These RNAs are synthetized from genetic information (DNA) by enzymes that read specific sections of the DNA (genes) and use them as template to produce corresponding RNAs. Other enzymes then trim these RNAs into mature forms. Cells naturally contain a large number of different short RNA molecules called microRNAs. They have regulatory functions, such as controlling how many copies of a particular protein are made.

Small RNAs with a huge impact

The researchers studied the number and kind of microRNAs expressed by adult mice exposed to traumatic conditions in early life and compared them with non-traumatized mice. They discovered that traumatic stress alters the amount of several microRNAs in the blood, brain and sperm – while some microRNAs were produced in excess, others were lower than in the corresponding tissues or cells of control animals. These alterations resulted in misregulation of cellular processes normally controlled by these microRNAs.

After traumatic experiences, the mice behaved markedly differently: they partly lost their natural aversion to open spaces and bright light and had depressive-like behaviours. These behavioural symptoms were also transferred to the next generation via sperm, even though the offspring were not exposed to any traumatic stress themselves. 

Even passed on to the third generation

The metabolism of the offspring of stressed mice was also impaired: their insulin and blood-sugar levels were lower than in the offspring of non-traumatized parents. “We were able to demonstrate for the first time that traumatic experiences affect metabolism in the long-term and that these changes are hereditary”, says Mansuy. The effects on metabolism and behaviour even persisted in the third generation.

“With the imbalance in microRNAs in sperm, we have discovered a key factor through which trauma can be passed on,” explains Mansuy. However, certain questions remain open, such as how the dysregulation in short RNAs comes about. “Most likely, it is part of a chain of events that begins with the body producing too much stress hormones.”

Importantly, acquired traits other than those induced by trauma could also be inherited through similar mechanisms, the researcher suspects. “The environment leaves traces on the brain, on organs and also on gametes. Through gametes, these traces can be passed to the next generation.”

Mansuy and her team are currently studying the role of short RNAs in trauma inheritance in humans. As they were also able to demonstrate the microRNAs imbalance in the blood of traumatized mice and their offspring, the scientists hope that their results may be useful to develop a blood test for diagnostics.

kennyxp:

The moon turned a blood red over the Sossusvlei Desert Lodge on NamibRand Nature Reserve in Namibia in this stunning photo taken by skywatcher George Tucker on June 15, 2011. 
CREDIT: George Tucker

kennyxp:

The moon turned a blood red over the Sossusvlei Desert Lodge on NamibRand Nature Reserve in Namibia in this stunning photo taken by skywatcher George Tucker on June 15, 2011. 

CREDIT: George Tucker

smilerforeverbitches:

Lunar eclipse

smilerforeverbitches:

Lunar eclipse

psychedeliclights:

…Lunar eclipse…

psychedeliclights:

…Lunar eclipse…

diana17love:

Tumblr∞ on We Heart Ithttp://weheartit.com/entry/111325953/via/VannessaCano
myirishhome:

Blood Red Moon

myirishhome:

Blood Red Moon